* Step 1: DependencyPairs WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) quot(0(),s(y)) -> 0() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) - Signature: {minus/2,quot/2} / {0/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {minus,quot} and constructors {0,s} + Applied Processor: DependencyPairs {dpKind_ = WIDP} + Details: We add the following weak innermost dependency pairs: Strict DPs minus#(x,0()) -> c_1() minus#(s(x),s(y)) -> c_2(minus#(x,y)) quot#(0(),s(y)) -> c_3() quot#(s(x),s(y)) -> c_4(quot#(minus(x,y),s(y))) Weak DPs and mark the set of starting terms. * Step 2: UsableRules WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: minus#(x,0()) -> c_1() minus#(s(x),s(y)) -> c_2(minus#(x,y)) quot#(0(),s(y)) -> c_3() quot#(s(x),s(y)) -> c_4(quot#(minus(x,y),s(y))) - Strict TRS: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) quot(0(),s(y)) -> 0() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) - Signature: {minus/2,quot/2,minus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1} - Obligation: innermost runtime complexity wrt. defined symbols {minus#,quot#} and constructors {0,s} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) minus#(x,0()) -> c_1() minus#(s(x),s(y)) -> c_2(minus#(x,y)) quot#(0(),s(y)) -> c_3() quot#(s(x),s(y)) -> c_4(quot#(minus(x,y),s(y))) * Step 3: WeightGap WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: minus#(x,0()) -> c_1() minus#(s(x),s(y)) -> c_2(minus#(x,y)) quot#(0(),s(y)) -> c_3() quot#(s(x),s(y)) -> c_4(quot#(minus(x,y),s(y))) - Strict TRS: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) - Signature: {minus/2,quot/2,minus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1} - Obligation: innermost runtime complexity wrt. defined symbols {minus#,quot#} and constructors {0,s} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnTrs} + Details: The weightgap principle applies using the following constant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(quot#) = {1}, uargs(c_2) = {1}, uargs(c_4) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [0] p(minus) = [1] x1 + [9] p(quot) = [0] p(s) = [1] x1 + [2] p(minus#) = [12] x1 + [2] x2 + [2] p(quot#) = [1] x1 + [3] x2 + [1] p(c_1) = [0] p(c_2) = [1] x1 + [0] p(c_3) = [0] p(c_4) = [1] x1 + [0] Following rules are strictly oriented: minus#(x,0()) = [12] x + [2] > [0] = c_1() minus#(s(x),s(y)) = [12] x + [2] y + [30] > [12] x + [2] y + [2] = c_2(minus#(x,y)) quot#(0(),s(y)) = [3] y + [7] > [0] = c_3() minus(x,0()) = [1] x + [9] > [1] x + [0] = x minus(s(x),s(y)) = [1] x + [11] > [1] x + [9] = minus(x,y) Following rules are (at-least) weakly oriented: quot#(s(x),s(y)) = [1] x + [3] y + [9] >= [1] x + [3] y + [16] = c_4(quot#(minus(x,y),s(y))) Further, it can be verified that all rules not oriented are covered by the weightgap condition. * Step 4: RemoveWeakSuffixes WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: quot#(s(x),s(y)) -> c_4(quot#(minus(x,y),s(y))) - Weak DPs: minus#(x,0()) -> c_1() minus#(s(x),s(y)) -> c_2(minus#(x,y)) quot#(0(),s(y)) -> c_3() - Weak TRS: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) - Signature: {minus/2,quot/2,minus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1} - Obligation: innermost runtime complexity wrt. defined symbols {minus#,quot#} and constructors {0,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:quot#(s(x),s(y)) -> c_4(quot#(minus(x,y),s(y))) -->_1 quot#(0(),s(y)) -> c_3():4 -->_1 quot#(s(x),s(y)) -> c_4(quot#(minus(x,y),s(y))):1 2:W:minus#(x,0()) -> c_1() 3:W:minus#(s(x),s(y)) -> c_2(minus#(x,y)) -->_1 minus#(s(x),s(y)) -> c_2(minus#(x,y)):3 -->_1 minus#(x,0()) -> c_1():2 4:W:quot#(0(),s(y)) -> c_3() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 3: minus#(s(x),s(y)) -> c_2(minus#(x,y)) 2: minus#(x,0()) -> c_1() 4: quot#(0(),s(y)) -> c_3() * Step 5: PredecessorEstimationCP WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: quot#(s(x),s(y)) -> c_4(quot#(minus(x,y),s(y))) - Weak TRS: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) - Signature: {minus/2,quot/2,minus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1} - Obligation: innermost runtime complexity wrt. defined symbols {minus#,quot#} and constructors {0,s} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 1: quot#(s(x),s(y)) -> c_4(quot#(minus(x,y),s(y))) The strictly oriented rules are moved into the weak component. ** Step 5.a:1: NaturalMI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: quot#(s(x),s(y)) -> c_4(quot#(minus(x,y),s(y))) - Weak TRS: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) - Signature: {minus/2,quot/2,minus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1} - Obligation: innermost runtime complexity wrt. defined symbols {minus#,quot#} and constructors {0,s} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_4) = {1} Following symbols are considered usable: {minus,minus#,quot#} TcT has computed the following interpretation: p(0) = [0] p(minus) = [1] x1 + [1] p(quot) = [1] x2 + [0] p(s) = [1] x1 + [2] p(minus#) = [2] p(quot#) = [8] x1 + [8] p(c_1) = [8] p(c_2) = [1] x1 + [0] p(c_3) = [0] p(c_4) = [1] x1 + [1] Following rules are strictly oriented: quot#(s(x),s(y)) = [8] x + [24] > [8] x + [17] = c_4(quot#(minus(x,y),s(y))) Following rules are (at-least) weakly oriented: minus(x,0()) = [1] x + [1] >= [1] x + [0] = x minus(s(x),s(y)) = [1] x + [3] >= [1] x + [1] = minus(x,y) ** Step 5.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: quot#(s(x),s(y)) -> c_4(quot#(minus(x,y),s(y))) - Weak TRS: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) - Signature: {minus/2,quot/2,minus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1} - Obligation: innermost runtime complexity wrt. defined symbols {minus#,quot#} and constructors {0,s} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () ** Step 5.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: quot#(s(x),s(y)) -> c_4(quot#(minus(x,y),s(y))) - Weak TRS: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) - Signature: {minus/2,quot/2,minus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1} - Obligation: innermost runtime complexity wrt. defined symbols {minus#,quot#} and constructors {0,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:W:quot#(s(x),s(y)) -> c_4(quot#(minus(x,y),s(y))) -->_1 quot#(s(x),s(y)) -> c_4(quot#(minus(x,y),s(y))):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: quot#(s(x),s(y)) -> c_4(quot#(minus(x,y),s(y))) ** Step 5.b:2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) - Signature: {minus/2,quot/2,minus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1} - Obligation: innermost runtime complexity wrt. defined symbols {minus#,quot#} and constructors {0,s} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(n^1))